Ethernet to CAN Converter
Communication Protocol

Document version: 4
Date: April 5, 2021
Written by: Oleksandr Bogush, Axiomatic Technologies Corporation.

Contents
INEFOTUCTION .ttt ettt e et e e s bt e s bt e e sa b e e s bt e e sabeesabeesabbeesabeeebaeessteesabeeesareens 2
PrOTOCOI BASICS c..veeuteeteeiiteeiie ettt ettt sttt ettt b e s bt s at e st e et e e bt e e bt e sheesaeesabeea b e e bt e beesbeesaeeeateenteenbeesaeesanenas 2
ProtOCOl MESSAEE STIUCTUIE...cciiiiiie it ettt ettt e e et e e et e e e et e e e e e be e e e eeabeeeeesabaeeeernbaeeeesnsaseeennsaeeeennrenas 2
YT T Yo Y el o 1=V =T SRR 3
Y LY=o D - | - TSN 4
PPOLOCOI ID .ottt ettt ettt sttt e sttt s bt e e sab e e s abeeesa bt e sabaeesabeesabeeesabeesabeeenbeesabeeesareenn 4
IMLESSAEE IDS .. ieeieeiieee ettt e e e ettt e s e e e e e et ae b e e e s e e e e e ea e b e e e e e e e e e e b e e e e e e eaeban e e eeeeeearraneeaaes 4
CONNECEION LIfOTIME ettt ettt et et e s bt e sae e st et e et e e be e beesbeesaeesaeeeatean 5
TCP PrOLOCOLttt ettt h e ht e ettt e bt e s bt e s he e sat e st e e be e bt e abeesueesateeabeebeenneesanenas 5
UDP PrOTOCOLc ettt ettt ettt st st st e bt e s b e saeesanesan e e bt e neesreesmneenneen 5
CAN and NOtIfiCation STrEAMceuiiiiiei ettt s st r e bt s s e e neenes 5
MESSAEE Data STIUCTUIE...ciiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt et et et e e e eeee e e eeeeeeteeeeeeeeeteaeeeeeeeeeaeseseeeeeseeeseesenes 5
CAN FramIBS. .. eeeieeiiieee ettt ettt et e s et e s s et e e s e b et e e s e bae e e e s sr et e e s nba e e e smnaeeesanbaeeesannneeenan 6
(@70 T a1 o] 1= 17 o TSRS 6
BT =T 11 TN 7
(07 N e 1= 01 41 1T STV TSRO PRO PP 8
CAN Daata ByLeS ceeeeeeeeeeeeeieieeeeeeeeeesee e e e e e e e e s e e e s e s e s e s e e e s e e e e e s e e e s e s e sesesasasasssssssssssssssssssasssssssssssnnanansenns 9
NOTITICATION Fram@s. .. .coiuiiiiiiiie ettt sttt st b e b e s be e s e e st e eaneenreesneesnnenas 9
NOTIFICAtION IAENTIIEI ...ttt ettt st st st e be e 10
NOTIFICATION DATA ..eeuteeeiiitiete ettt ettt et b e b e s bt e sat e e ab e et e e beesbeesaeesaeesabesabeenbeenaas 10
) = 1 (0 (=T [0 =] SR 10
SHATUS RO P ONSE et e e e e e e e e e s e e e e e e e e e e e e e s e e e e e e e s e sesasasasasesasasssasssssssessessesssssssesseesensnensenanans 10
Status RESPONSE Data FIeIASeiiieiiiie ettt e e s bee e s et e e e e e abae e e ennreeeeenreeas 10
HEAITN DAt ...ttt ettt et e b she e st et e bt e nne e sae e s b s n e reennes 11

COMPANY CONFIDENTIAL 1|Page

(0001 01V 7= T o =T G Y/ o1 TP T T TS T PP PP 11

1o [o 1T | RO TP P PP PPN 11
Heartbeat Data FIeldSou ittt st ettt et e s bt e e sab e e s b e e sbeeesaneeenees 11
MESSAEE NUMDET «..eiiiiiiiiie ettt e e rrte e e ettt e e e st e e e s e beeeesaabeeeeesabeeeeenabeaeeensseeesennseeessnnsenas 11
TIME INEEIVAL ...ttt et st e s bt e e st e s bt e e st e e sabeeesabeesbeeeaneeesareeesareenn 12
HEAITN DAt ...ttt sttt et e bt sbe e sttt e bt e bt e he e et e st e b e beenes 12
(0001 1Y 7=T o =T G Y/ o1 TP T P TSP PP 12
REFEIEINCES ..ttt ettt sttt e b e s bt e s bt e s at e et e bt e bt e e be e sae e sabeea b e ebeeebeesaeesabesabeebeennes 12
DOCUMENT VEISION HiSTOIY ..iiiiiiiiiiiiiiiieteee ettt e e e s sttt e e e e s s sttt et e e e e e s sassanbaaeeeeesssasssreeeeeeas 12
Introduction

The following document describes a proprietary communication protocol used by Axiomatic Ethernet to
CAN and WiFi to CAN converters.

The protocol is used to transmit CAN messages over a TCP/IP network. In addition to CAN messages, the
protocol also defines control and status messages necessary to communicate with the converter.

The document contains terminology and acronyms from CAN and TCP/IP protocols. Their meaning is
explained in the appropriate CAN and TCP/IP documentation.

The document version contains a number and an optional letter. The number reflects changes in the
actual protocol (all changes must be backward compatible), and the letter is used to change the protocol
description.

Protocol Basics

The protocol is binary based. It runs on top of the standard UDP or TCP internet protocols. It uses a
protocol independent message structure described below. This structure is also implemented in other
Axiomatic proprietary communication protocols [1].

Protocol Message Structure
All protocol messages use the following protocol message structure, see Figure 1:

COMPANY CONFIDENTIAL 2|Page

Message Header

Message Data

11-byte

0...245 bytes

11...256 bytes

d
|

Figure 1. Protocol Message Structure

The protocol message contains:

11-byte Message Header;

Variable size Message Data field, from 0 up to 245 bytes.
The overall size of the protocol message is limited to 256 bytes to protect the messages from

fragmentation during transmission over the internet and to simplify handling in embedded systems with
limited RAM resources.

The protocol messages are transmitted in the ascending octet order. All numerical values in all message

fields, unless explicitly stated, are presented least significant byte (LSB) first.

Message Header
The protocol Message Header contains:

4-byte Axiomatic Tag, AXIO in capital letters;

2-byte Protocol ID;
2-byte Message ID;

1-byte Message Version (0 by default);

2-byte Message Data Length.

The protocol Message Header format is presented below:
Table 1. Protocol Message Header Format

Octet 0 1 2 3
Offset Octet
0 A X I (0]
0x41 0x58 0x49 Ox4F
Axiomatic Tag
Protocol ID Message ID
Message Message Data Length Message Data
Version (0 by (optional, if Message
default) Data Length > 0)

The Axiomatic Tag is used for the message header identification.

COMPANY CONFIDENTIAL

3|Page

The Protocol ID defines a proprietary protocol carried by this message. This field allows different
protocols to use the same protocol independent message structure. The Protocol ID equal, for example,
0x36BA, is presented as: (0xBA, 0x36) — LSB first and the most significant byte (MSB) second:

Table 2. Protocol ID Presentation

Octet 0 1 2 3
Offset Octet
4 OxBA 0x36 Message ID
Protocol ID=14010=0x36BA

The Message ID defines a type of the message within the specified protocol and the Message Data
Length — its length. The Message Data Length should be zero for messages without the Message Data

The Message Version field is used to distinguish between different message data formats in messages
with the same Message ID. Different versions of the same message should have backward compatible
data formats.

This protocol message header format allows parsing of the protocol messages without any knowledge of
the message data content. Each Message Data field is then parsed by individual protocol-specific parsers
based on: Protocol ID, Message ID and Message Version fields.

Message Data
The Message Data field format depends on the protocol and the message type defined in the Message
Header.

Protocol ID
The proprietary communication protocol described in this document uses the Protocol ID = 14010 — the
project number of the converter first used this protocol.

Message IDs

The following Message IDs are defined in the current version of the protocol.
Table 3. Message IDs.
Message ID Message Versions Message Name

Undefined Message
CAN and Notification Stream
Status Request

,1 Status Response

1 Heartbeat

o O O o o

The Undefined Message has no parser associated with it. Messages with IDs not shown in Table 3 are
not processed by the current version of the protocol. They are treated the same way, as Undefined
Messages.

COMPANY CONFIDENTIAL 4|Page

Connection Lifetime
The connection lifetime for a pair of nodes communicating using the proprietary communication
protocol depends on the upper-level IP protocol and the message traffic between the nodes.

TCP Protocol
If the TCP protocol is used, the connection is maintained by the standard means of this protocol.

UDP Protocol
If the UDP protocol is used, the connection is considered to be lost after 10 seconds of inactivity on one
of the nodes. Inactivity here means no protocol messages for a certain period of time.

To avoid disconnection on inactivity, it is recommended that the node communicating with the
converter constantly send a Heartbeat or a Status Request message.

Heartbeat Message

The Heartbeat message is preferable, since it does not require a response message from the converter
and it has a standard sending interval defined in the Heartbeat section of this document. The Heartbeat
message with an undefined (all zeros) Health Data field can be potentially used for monitoring quality of
the connection on the converter side in the future extensions of the protocol, if all other fields including
the Message Number and the Time Interval are set.

A blank Heartbeat message with all data fields set to zeros is also acceptable, but only for maintaining a
connection with the converter. A converter itself cannot use such a message; it must define all the
message data fields.

Status Request
If the Status Request message is used to maintain a connection between nodes, it must not be sent
more often than the Heartbeat message.

CAN and Notification Stream

The CAN and Notification Stream is the main message type used by the Ethernet to CAN converter. It
encodes CAN messages. In addition to CAN messages, it can be used to send short notification
messages. The CAN and Notification Stream has Message ID = 1.

The notification messages are not defined in the current version of the protocol. This feature is left for
the future use.

Message Data Structure
Each CAN and Notification Stream message consists of CAN and Notification Frames following each
other in an arbitrary order. For example:

COMPANY CONFIDENTIAL 5|Page

]

Figure 2. CAN and Notification Stream Example

CAN Frames (CF) are used to transmit various types of CAN messages. Notification Frames (NF) are
intended to communicate status of the CAN interface. They also can be used to send run-time error
information, etc.

CAN Frames

CAN Frames have the following format:

CF = {CB,[TSB4,...,TSB4],IDB4,IDB,,[IDB3,|DB4],[DBy,...,DBs]},

Where:
CB — Control Byte;
TSB,...,TSBs — Optional one to four bytes of the Time Stamp, LSB first;
IDB4,IDB,,[IDB3,IDB4] — Two or four byte CAN ID with Remote Frame bit, LSB first;
DBjy,...,DBs— Optional up to eight CAN Data bytes.

Due to a variety of CAN message types and different length of the timestamp, the length of the CAN
Frame is variable. It is determined by the information in the first Control Byte (CB) of the frame.

Control Byte
Control Byte (CB) of the CAN Frame contains the following bits:

7 6 5 4 3 2 1 0

_‘ DBt | 3Bt | Lesit | Lisit | LoBit

Figure 3. CAN Frame. Control Byte

Bit 7 = C_Bit: Control Bit

0: CAN Frame.

1: Notification Frame.

This bit defines a type of the frame. It should be always 0 for CAN Frames.

Bit 6:5 = TS_Bit[1:0]: Time Stamp Length Bits
Refer to Table 4 for the TS_Bit settings.

Table 4. CAN Frame. Time Stamp Length Bits
TS1_Bit TSO_Bit Time Stamp Length in bytes

0 0 0 — No Time Stamp
0 1 1
1 0 2

(1)

COMPANY CONFIDENTIAL 6|Page

TS1_Bit TSO_Bit Time Stamp Length in bytes
1 1 4

Bit 4 = EID_Bit: Extended CAN ID Bit
0: CAN ID is standard
1: CAN ID is extended

Bit 3:0 = L_Bit[3:0] : CAN Data Length Bits
Refer to Table 5 for L_Bit settings.

Table 5. CAN Frame. CAN Data Length Bits
L3_Bit L2 _Bit L1_Bit LO_Bit Number of Data bytes

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1

1 - - - Undefined
1 1 1 1

Time Stamp

An optional Time Stamp (TS) carries a time interval between the current and the previous CAN messages
received on the CAN bus. It is filled by the Ethernet to CAN converter for incoming CAN messages. This
field is not used for encoding outcoming CAN messages sent to the Ethernet to CAN converter by
external nodes.

The Time Stamp is measured in milliseconds and can be: 0, 1, 2 or 4 byte long depending on the TS_Bit
value in the Control Byte.

For 1-byte Time Stamp:
Bit 0:7 in TSB, = TS_Bit[7:0] : 1-byte Time Stamp

7 6 5 4 3 2 1 0

TS7_Bit | TS6_Bit | TS5_Bit TS4_Bit TS3_Bit | TS2_Bit | TS1 Bit | TSO Bit | TSB:

Figure 4. CAN Frame. One-byte Time Stamp

For 2-byte Time Stamp:
Bit 0:7 in TSBs, Bit 0:7 in TSB, = TS_Bit[15:0] : 2-byte Time Stamp

COMPANY CONFIDENTIAL 7|Page

7 6 5 4 3 2 1 0
TS7_Bit | TS6_Bit | TS5_Bit TS4_Bit TS3_Bit | TS2_Bit | TS1_Bit | TSO_Bit
7 6 5 4 3 2 1 0
TS15_Bit | TS14 Bit | TS13_Bit | TS12 Bit | TS11 Bit | TS10_Bit | TS9 Bit | TS8 Bit

Figure 5. CAN Frame. Two-byte Time Stamp

For 4-byte Time Stamp:

Bit 0:7 in TSB,, Bit 0:7 in TSB,, Bit 0:7 in TSB3, Bit 0:7 in TSB,= TS_Bit[31:0] : 4-byte Time Stamp

7 6 5 4 3 2 1 0
Ts7_Bit | TS6_Bit TS5_Bit TS4_Bit TS3_Bit TS2_Bit | TS1_Bit TSO_Bit
7 6 5 4 3 2 1 0
TS15 Bit | TS14 Bit | TS13_Bit | TS12_Bit | TS11 Bit | TS10 Bit | TS9_Bit TS8_Bit
7 6 5 4 3 2 1 0
TS23_Bit TS22_Bit TS21_Bit TS20_Bit TS19_Bit TS18 Bit TS17_Bit TS16_Bit
7 6 5 4 3 2 1 0
TS31 Bit | TS30 Bit | TS29 Bit | TS28 Bit | TS27_Bit | TS26 _Bit | TS25 Bit | TS24 Bit
Figure 6. CAN Frame. Four-byte Time Stamp
CAN Identifier
CAN Identifier (CAN ID) structure is different for Standard and Extended CAN ID.
Standard CAN ID
0

Figure 7. CAN Frame. Standard CAN ID.

Reserved

Reserved

TSB:

TSB;

TSB:

TSB:

TSB3

TSB4

0

Bit 0:7 in IDBy, Bit 0:2 in IDB; = ID_Bit[10:0] : CAN Standard Identifier

Bit 3:6 in IDB, = Reserved.

COMPANY CONFIDENTIAL

8|Page

Bit 7 in IDB, = RF_Bit : Remote Frame Bit
0: CAN Frame is a regular data frame
1: CAN Frame is a remote request for a data frame

Extended CAN ID
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
6 5 4 3 2 1 0

7

Figure 8. CAN Frame. Extended CAN ID

Bit 0:7 in IDB;, IDB,, IDBsand Bit 0:4 in IDB, = ID_Bit[28:0] : CAN Extended Identifier
Bit 5:6 in IDB4= Reserved

Bit 7 in IDB4 = RF_Bit : Remote Frame Bit
0: CAN Frame is a regular data frame
1: CAN Frame is a remote request for a data frame

CAN Data Bytes
Optional CAN Data bytes are placed after CAN ID in the same order they appear in the CAN message.

The number of CAN Data bytes is specified by the L_Bit field in the Control Byte (CB).

Notification Frames
The format of the Notification Frames is presented below:

NF = {NIDB,NDBj,...,NDBa},

(2)

Where:

NIDB — Notification Identifier byte;

NDB;,...,NDB4— Notification Data bytes.
In opposite to the variable size CAN Frames, Notification Frames have a 5-byte fixed size format.
Notification Identifier byte (NIDB) carries the Notification Identifier, which defines information sent by

COMPANY CONFIDENTIAL 9|Page

the Notification Frame and the meaning of the four Notification Data bytes (NDB) associated with the
frame.

Notification Identifier
The Notification Identifier byte (NIDB) has the following format:

7 6 5 4 3 2 1 0
Figure 9. Notification Frame. Notification ID Byte
Bit 7 = C_Bit: Control Bit
0: CAN Frame.

1: Notification Frame.
This bit defines a type of the frame. It should be always 1 for Notification Frames.

Bit 0:6 = NID_Bit[6:0] : Notification Identifier
Seven bits of the Notification Identifier can determine up to 128 different notification messages.

Notification Data
The four Notification Data bytes carry information defined by the Notification Identifier.

There are no notification messages supported by the current version of the protocol.

Status Request
The Stratus Request message with Message ID = 2 is sent from a node to the Ethernet to CAN converter
to request its status. The converter must respond with the Status Response message.

The Status Request message does not contain any data.

Status Response
The Status Response message with Message ID = 3 is sent by the Ethernet to CAN converter in response
to the Stratus Request message. Two message versions {0,1} are defined for this message.

Status Response Data Fields
The Status Response message sends the following data:
SRM = {HDB4,..., HDB 4, CANRXDEB;,...,CANRXDEB 4, CANTXDEB;,..., CANRXDEB 4,
CANBusOffBs,...,CANBusOffB 4, CT},

(3)
Where:

HDB,,..., HDB 4 — 4-byte Health Data, LSB first,
CANRXDEB;,..., CANRXDEB 5 — 4-byte CAN Receive Error Counter, LSB first,

COMPANY CONFIDENTIAL 10| Page

CANTxDEB;,..., CANTXDEB 4 — 4-byte CAN Transmit Error Counter, LSB first,
CANBusOffBy,..., CANBusOffB s — 4-byte CAN Bus Off Counter, LSB first,
CT — 1-byte Converter Type (Defined only in Message Version = 1).

Health Data
The 4-byte Health Data field contains the health status information of the Ethernet to CAN converter. It

is described in [2].

Converter Type
The following Converter Types are defined in Message Version = 1:

Table 6. Converter Types

Converter Type Name

0! Ethernet to CAN converter with CAN Voltage Output
1 WiFi to CAN converter
2 WiFi to CAN converter with CAN datalogging capability

IDefault value if the Converter Type is not defined (e.g., in the Message Version = 0)

Heartbeat

The Heartbeat message with Message ID = 4 is sent by the Ethernet to CAN converter every 1s to
maintain a link with the connected node and to inform the node about the converter status. Two
message versions {0,1} are defined for this message.

Heartbeat Data Fields
The Heartbeat message sends the following data:

HM = {MNBsy,..., MNB 4, TIBy,..., TIB4, HDBy,..., HDB 4, CT},

(4)

Where:

MNBy,..., MNB , — 4-byte Message Number, LSB first,

TIBy,..., TIB 4 — 4-byte Time Interval in milliseconds elapsed from the last Heartbeat message, LSB

first,

HDB,,..., HDB 4 — 4-byte Health Data, LSB first,

CT — 1-byte Converter Type (Defined only in Message Version = 1).
If the Heartbeat message is used only to maintain a connection between the node and the converter,
the node can use a blank Heartbeat message with all data fields set to zero.

Message Number
The Message Number is a value of a free-running global counter, which is incremented every time the
Heartbeat message is generated. One counter is used for all connected nodes.

The nodes can examine the Message Number consistency to check the state of the data link between

the node and the converter in case a connectionless UDP communication protocol is used to carry
protocol messages.

COMPANY CONFIDENTIAL 11| Page

The Message Number can be set to zero in a blank Heartbeat message.

Time Interval

The Heartbeat Message sends the Time Interval in milliseconds elapsed from the last Heartbeat
message. This value is close to 1000 for 1s heartbeat interval and can be used by nodes to estimate
delays in communication between the nodes and the Ethernet to CAN converter.

The Time Interval can be set to zero in a blank Heartbeat message.

Health Data
The Health Data field is the same as in the Status Response message [2]. In can be set to zero in a blank
Heartbeat message.

Converter Type
The Converter Type field is the same as in the Status Response message. In can be set to zero in a blank
Heartbeat message.

References

[1] O. Bogush, "Ethernet to CAN Converter Discovery Protocol. Document version: 1A," Axiomatic
Technologies Corporation, April 5, 2021.

[2] O. Bogush, "Ethernet to CAN Converter Health Status. Document version: 3," Axiomatic
Technologies Corporation, April 5, 2021.

Document Version History

Document

Author Changes

Version

April 5, 2021 Added WiFi to CAN converters in Introduction section.
Bogush Removed Health Data field format. It is now a part of the

“Ethernet to CAN Converter Health Status. Document
Version 3”. Added Converter Type and different versions of
the Status Response and Heartbeat messages. Updated
References section.

October 26, Olek Added the document version description in the

2016 Bogush Introduction section.
Changed the Protocol Basics section. Defined the protocol
independent message structure. Generalized the protocol
message header format to support different Protocol IDs.
Added Connection Lifetime subsection.

COMPANY CONFIDENTIAL 12| Page

Document

. Date Author Changes
Version

Added a blank Heartbeat message.
Added References section.
June 27, Olek Added Flash Memory Driver Initialization Operational

2
- 2016 Bogush Status field. Updated reference to the Ethernet to CAN
Converter Health Status document.
1A February 5, Olek Made the document generic. Removed references to the
2016 Bogush project 14010, except for the protocol ID. Replaced the
Ethernet to CAN Gateway term with the term: Ethernet to
CAN Converter.
Corrected Table 7. Heath Status aggregation rules.
October 28, Olek Initial version.

2015 Bogush

COMPANY CONFIDENTIAL 13| Page

